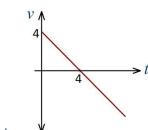
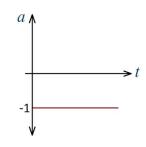

This assignment is to gain an understanding and application of differentiation.

- 1. Differentiation of displacement (given as a function of time) w.r.t. time gives ______
- 2. Differentiation of velocity (given as a function of time) w.r.t. time gives _____
- 3. Differentiate the following w.r.t. *x*
 - (a) $3x^2 + 2x 10$
 - (b) $20x x^3$
 - (c) $\sin(x) 2\cos(x)$
 - (d) $1/x + x^2 + \sin(x)$
 - (e) $\sin(2x) + \cos(-3x)$
- 4. Differentiate the following w.r.t. time (t)
 - (a) $-5t^2+t-4$
 - (b) $2t 7t^3$
 - (c) $-6\cos(2t)$
 - (d) $5/t + 3t^2 + \sin(t)$
 - (e) $sin(\pi t) + cos(-2\pi t)$
 - (f) 20.5
- 5. Displacement of a body is given by the relation x = 5t 10.
 - (a) Find the velocity of the body.
 - (b) Plot a graph for displacement as a function of time
 - (c) Plot a graph for velocity as a function of time
- 6. Velocity of a body is given by the relation v = -t + 4.
 - (a) Find the acceleration of the body.
 - (b) Plot a graph for velocity as a function of time
 - (c) Plot a graph for acceleration as a function of time
- 7. Displacement of a body is given by the relation $x = -2\sin(t) + \cos(6t)$. Find the velocity of the body. Is the velocity constant?
- 8. Displacement of a body is given by the relation $y = 6t^2 2t$. Find
 - (a) Initial displacement


- (b) Initial velocity
- (c) Instant of time when its velocity becomes zero
- (d) Displacement of the body at that instant of time
- 9. Velocity of a body is given by the relation $v = -10t^2 + 4t + 10$. Find
 - (a) Initial velocity of the body
 - (b) Initial acceleration
 - (c) Instant of time when its acceleration becomes zero
 - (d) Velocity of the body when its acceleration becomes zero
- 10. Displacement of a body is given by the relation $y = t^2 + 4t 20$.
 - (a) Find the instant of time when the body crosses the origin
 - (b) What is the velocity of the body when it crosses the origin?
 - (c) What is the acceleration of the body when it crosses the origin?
 - (d) Find the velocity of the body at an instant when its acceleration becomes zero (if at all).
 - (e) Find the acceleration of the body at an instant when its velocity becomes zero (if at all).

Answers


- 1. velocity
- 2. acceleration
- 3. (a) 6x + 2
 - (b) $20 3x^2$
 - (c) cos(x) + 2 sin(x)
 - (d) $-1/x^2 + 2x + \cos(x)$
 - (e) $2\cos(2x) + 3\sin(3x)$
- 4. (a) -10t + 1
 - (b) $2-21t^2$
 - (c) $12 \sin(2t)$
 - (d) $-5/t^2 + 6 t + \cos(t)$
 - (e) $\pi \cos(\pi t) + 2\pi \sin(2\pi t)$
 - (f) 0
- 5. (a) 5 ms⁻¹

- 5
- (c)
- 6. (a) -1 ms⁻²

(b)

- 7. (a) $2\cos(\pi t) 6\sin(6t)$
 - (b) No

(c)

- 8. (a) Zero
 - (b) -2 ms⁻¹
 - (c) 1/6 s
 - (d) 1/6 m
- 9. (a) 10 ms⁻¹
 - (b) 4 ms⁻²
 - (c) 1/5 s
 - (d) 9.76 ms⁻¹
- 10. (a) 4 s
 - (b) 12 ms⁻¹
 - (c) 2ms⁻²
 - (d) acceleration is constant and does not become zero
 - (d) velocity remains positive and does not become zero